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a  b  s  t  r  a  c  t

In  a series  of  papers  published  from  1871  to 1889,  Jožef  (Josef)  Stefan  dealt  with  several  diffusion  pro-
cesses,  including  also  multicomponent  systems.  In  his  last  paper  on  diffusion,  which  appeared  in  1889,
he studied  the  dissolution-diffusion  process  with  a  moving  interface,  and  gave  an  analytical  solution
to  this  problem.  However,  Stefan’s  dissolution-diffusion  analysis  is  not  mentioned  in  literature,  and  its
existence  seems  to  be unknown  in  scientific  community.  The  present  paper  summarizes  the  main  Stefan
eywords:
tefan problem
issolution
iffusion
oving interface

nterface conditions

ideas  on  dissolution  of solids  governed  by diffusion  of  solute  in  the  adjacent  solvent  phase  thus  making
his  results  accessible  to wider  scientific  circles.

© 2012 Elsevier B.V. All rights reserved.
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. Introduction

Dissolution of solids in liquids and gases is encountered both
n nature and many technical processes. The dissolution of cook-
ng salt and sugar in processes of everyday life, minerals in rain

ater, drugs in leaving organisms, direct solid–vapor phase tran-
ition (sublimation of water ice at low temperature) might serve
s examples. According to the wide field of dissolution occurrence
nd application, it is not surprising that mechanisms behind the dis-
olution phenomena have attracted the attention of scientists for
enturies. Dokoumetzidis and Macheras (2006) provided a com-
rehensive review in this area, starting with the paper by Noyes
nd Whitney (1897).  Regarding the historical boundaries stated in

supplement the review by including the contributions of Jožef Ste-
fan (1835–1893) to the understanding of dissolution phenomena.1

In the period from 1870 to 1890, Stefan conducted several exper-
iments on diffusion in gases and liquids under various initial and
boundary conditions and published a series of papers, altogether
some 240 pages (Mitrovic, in press). In his last paper on diffusion
(Stefan, 1889), which appeared 8 years prior to the (Noyes and
Whitney, 1897) publication, Stefan gave a detailed description of
the dissolution process governed by diffusion of the solute in the
adjacent solvent phase. Consequently, the widely accepted view
that the paper by Noyes and Whitney marks the beginning of the
modeling of dissolution-diffusion phenomena appears thus to be
incorrect. This fact, however, is not only of historical interest.
he title of their publication, Dokoumetzidis and Macheras’ review
s complete and provides important historical insights into the
nderstanding and modeling of dissolution phenomena. However,

t would be of interest to push back the lower time boundary and

∗ Tel.: +49 7157 70 55 69; fax: +49 7157 70 55 70.
E-mail address: mitrovic@tebam.de

378-5173/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.ijpharm.2012.04.021
Stefan’s analysis of the dissolution-diffusion phenomena, which
was  published in the Sitzungsberichte der kaiserlichen Akademie der
Wissenschaften Wien (hereafter referred to as Sitzungsberichte) in

1 Josef Stefan was a professor in mathematical physics at the University Vienna.
His  name is tightly connected with several transport phenomena like diffusion,
thermal radiation, Stefan-problem in heat transfer (solidification). He was the Dok-
torvater (supervisor) of only of 3 PhD students: Josef Loschmidt, Ludwig Boltzmann
and Marian von Smoluchowski. All of them became later world-renown scientists.

dx.doi.org/10.1016/j.ijpharm.2012.04.021
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:mitrovic@tebam.de
dx.doi.org/10.1016/j.ijpharm.2012.04.021
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Nomenclature

Latin letters
A  resistance coefficient
B constant
c molar density
D diffusion coefficient
f  interaction force, function
j diffusion flux
K constant
L position of interface, penetration depth
M molar mass
ṅ molar flux
p pressure
R resistance force
� gas constant
t time
T temperature
u velocity
v molar volume
X body force
x,y,z coordinates
z  dummy  variable

Greek letters
˛  constant

 ̌ parameter
� acceleration
� mass density

Indices
I  interface
L liquid
S solid
1 component 1
2 component 2
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12 binary pair 1-2

889, is not mentioned in literature. This journal was  not widely
istributed at that time among libraries as other journals. In addi-
ion, the physics of the dissolution-diffusion phenomenon Stefan
ormulated for the first time was not that simple, and, notwith-
tanding the reprinting of the paper in Annalen der Physik (Stefan,
890) in 1890, the Stefan ideas got forgotten. This may  be viewed as

 loss of an important scientific contribution. It is thus the aim of this
aper to present the main results of Stefan’s work on dissolution
nd to make it accessible to broader scientific circles.

. The basis of Stefan’s diffusion theory

Stefan derived the diffusion equations for gas mixtures starting
rom the basic principles of classical mechanics. For a binary system
hese equations have the form (x-direction, component 1):

�1X1 − ∂p1

∂x

)
dxdydz − R12 = �1�1dxdydz,  (1)

here �1, P1, X1, and �1 denote, respectively, the mass density, the
artial pressure, the body force, and the average acceleration; R12

s the resistance force (Fig. 1).

The resistance force R12 accounts for the interaction of the

pecies in the mixture and was expressed as

12 = A12�1�2(u1 − u2)dxdydz, (2)
Fig. 1. Distribution of partial pressures and directions of the diffusion fluxes in an
isobaric binary gas system (above), illustration of the resistance force (below).

where �2 is the mass density of the companion gas, and A12 is a
constant that depends on the nature of the gases; u1 and u2 are the
absolute average velocities of the components.

Inserting (2) in (1) gives

�1�1 = �1X1 − ∂p1

∂x
− A12�1�2(u1 − u2). (3)

By the same reasoning, it follows for the component 2:

�2�2 = �2X2 − ∂p2

∂x
− A21�1�2(u1 − u2) (4)

where, by Newton principle, R12 = R21 and A12 = A21.

3. The Stefan analysis of dissolution-diffusion processes

Stefan started the dissolution-diffusion investigations by stating
the process conditions as follows: constant system temperature,
constant system pressure, negligible accelerations of the compo-
nents, and absence of body forces. Then his Eqs. (3) and (4) become:

∂p1

∂x
+ A12�1�2(u1 − u2) = 0

∂p2

∂x
+ A21�1�2(u1 − u2) = 0

(5)

As the movement of the components must satisfy the continu-
ity requirements, these equations must be supplemented by the
equations of continuity:

∂�1

∂t
+ ∂(�1u1)

∂x
= 0

∂�2

∂t
+ ∂(�2u2)

∂x
= 0

(6)

where t denotes the time.
The above equations have been originally derived for gaseous
systems. In order to apply them in a dissolution-diffusion process,
Stefan (1889, 1890) provided first a brief comment on diffusion
in liquids and considered then the dissolution of solids in liquids,
which is controlled by diffusion of the solute in the adjacent liquid
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hase. While doing so he assumed that the partial pressures p1 and
2 of the gas components in Eqs. (5) and (6) may  be expressed in
ase of liquid mixtures as

1 = K1c1 p2 = K2c2, (7)

here the quantities K1 and K2 shall be independent of the molar
oncentrations c1 and c2 in the mixture.

Stefan did not state the physics behind the relations (7).  One
ould speculate about his thoughts on this point and connect his
deas with the concept of the osmotic pressure  ̆ (  ̆ = � Tc = Kc;

 = const for ideal solution at T = const), which was well-established
t that time (see e.g. Findlay, 1919). By contrast, he gave a detailed
nalysis of the diffusion of the solute in a liquid, as follows next.

Inserting in Eq. (5) the pressures according to (7) and adding
ives

1
∂c1

∂x
+ K2

∂c2

∂x
= 0. (8)

By the assumption that diffusion in liquids occurs at constant
olume of the mixture, the relation

1v1 + c2v2 = 1, (9)

as obtained and combined with Eq. (8) to get

1 = Kv1, K2 = Kv2, (10)

1 = Kv1c1, p2 = Kv2c2. (11)

ere v1 and v2 are the molar volume of the components; K is now
 mixture-specific constant.

With the pressures p1 and p2 thus introduced, Eq. (5) become

Kv1
∂c1

∂x
+ A12M1M2c1c2(u1 − u2) = 0

Kv2
∂c2

∂x
+ A12M1M2c1c2(u1 − u2) = 0

⎫⎬
⎭ (12)

rom which, after multiplication by v1 and v2, one obtains

D12
∂c1

∂x
+ v2c1c2(u1 − u2) = 0

D21
∂c2

∂x
+ v1c1c2(u1 − u2) = 0

⎫⎬
⎭ , (13)

12 = Kv1v2

A12M1M2
, D21 = Kv1v2

A21M1M2
, D12 = D21, (14)

The continuity equations (6) are valid unchanged,

∂c1

∂t
+ ∂(c1u1)

∂x
= 0,

∂c2

∂t
+ ∂(c2u2)

∂x
= 0, (15)

nd multiplying first by v1 and the second by v2, then adding
ogether, and considering Eq. (9) gives:

∂

∂x
(v1c1u1 + v2c2u2) = 0 v1c1u1 + v2c2u2 /= f (x) (16)

For diffusion in a container with impermeable walls which Ste-
an at first assumed, it is u1, u2 = 0, and the expression

1c1u1 + v2c2u2 = 0 (17)

olds in the whole diffusion space.
Eliminating v2c2u2 in Eq. (13) for the component 1 by using Eq.

17) and considering Eq. (9) result in:

12
∂c1

∂x
+ c1u1 = 0 (18)

As Stefan noted, this equation represents the Fick equation of
iffusion, although such an equation has not been reported by Fick

1855a,b). However, its time-derivative, combined with Eq. (15),
esults in the so-called second Fick law,

∂c1

∂t
− D12

∂2c1

∂x2
= 0, (19)
Fig. 2. Schematic of Stefan’s dissolution-diffusion process.

An analogous equation immediately follows for the component
2. The condition (17), however, is not satisfied generally, e.g. for
systems with permeable walls.

Stefan applied the above equations to case of dissolution-
diffusion of solids in liquids, particularly of rock salt in water. Due to
solid dissolution, the solid–liquid interface moves (Fig. 2). Eqs. (13)
and (15) describe this process (component 1: solid phase, solute in
the solution):

D12
∂c1

∂x
+ v2c1c2(u1 − u2) = 0, (20)

∂c1

∂t
+ ∂(c1u1)

∂x
= 0, (21)

Because of the interface movement, the continuity requirements
for the species transport across the interface must be fulfilled. These
requirements are stated as the balance equations (Fig. 2):

ṅ1S = ṅ1L

ṅ2S = ṅ2S

c1S(u1S − uI) = c1L(u1L − uI)
c2S(u2S − uI) = c2L(u2L − uI)

}
(22)

where ṅ1 and ṅ2 denote the molar fluxes of the components 1 (sol-
vent) and 2 (solute), while the indices I, L and S refer to interface,
liquid phase and solid phase, respectively.

Multiplying the first of Eq. (22) by v1L and the second one by
v2L, and considering that the solid phase does not move, u1S = 0,
and does not contain any solvent, c2S = 0, they become

c1Lu1Lv1L = −c1SuIv1L + c1LuIv1L

c2Lu2Lv2L = c2LuIv2L

}
at x = L (23)

Adding them together gives

c1u1v1 + c2u2v2 = (−cSv1 + c1v1 + c2v2)uI at x = L (24)

where the index L is omitted.
Replacing c2v2 on the right in Eq. (24), according to Eq. (9),  and

considering that the interface velocity measures the time change
of the diffusion path L,

uI = dL

dt
. (25)

Eq. (24) becomes

c1u1v1 + c2u2v2 = −(cSv1 − 1)
dL

dt
. (26)

Inserting now c2u2v2 from this equation in Eq. (20) and rear-
ranging gives

D12
∂c1

∂x
+ c1u1 = −(cSv1 − 1)c1

dL

dt
. (27)
Combining the derivative of Eq. (27) with respect to x,

D12
∂2c1

∂x2
+ ∂

∂x
(c1u1) = −(cSv1 − 1)

∂c1

∂x

dL

dt
, (28)
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ith the continuity Eq. (21), leads to the Stefan dissolution-
iffusion equation:

∂c1

∂t
= D12

∂2c1

∂x2
+ (cSv1 − 1)

∂c1

∂x

dL

dt
. (29)

The boundary conditions to be satisfied by Eq. (29) are:

x = 0 : c10 = 0
x  = L : c1 = c1I

}
. (30)

At x = 0, the equation is satisfied automatically; it must but also
e satisfied at the interface, x = L, thus:

∂c1

∂t
= D12

∂2c1

∂x2
+ (cSv1 − 1)

∂c1

∂x

dL

dt
, x = L (31)

At this derivation stage Stefan noted, that there is also an addi-
ional condition at the interface that must be satisfied, namely
he continuity of fluxes of the species. With c1u1 = −(cS − c1)dL/dt
ccording to Eq. (23), this additional boundary condition follows
rom Eq. (27):

12
∂c1

∂x
= cS(1 − c1v1)

dL

dt
, at x = L (32)

The integral of the dissolution-diffusion equations (29) that
atisfies all of the boundary conditions according to Stefan
s:

1(x, t) = B

∫ x/(2
√

D12t)

0

exp(−z2 − 2˛ˇz)dz, (33)

 = 2˛
√

D12t,   ̌ = cSv1 − 1. (34)

The boundary conditions deliver the equations for the determi-
ation of the constants B and ˛:

 exp(˛2 + 2˛2ˇ)

∫ ˛

0

exp(−z2 − 2˛ˇz)dz = 1
2

1
1 − v1c1I

c1I

cS
, (35)

 = 2(1 − v1c1I)cS  ̨ exp(˛2 + 2˛2ˇ) (36)

The parameter  ̌ in Eq. (34) takes into account the expansion of
he solid phase due to dissolution.

As far as the author is aware, the differential equation (29) and
ts integral (33), taken together with the boundary conditions equa-
ions (35) and (36) present the first complete closed mathematical
nalysis of dissolution of solids in liquids. The Stefan papers (Stefan,
889, 1890) presenting this analysis have not been mentioned in lit-
rature. The review paper by Dokoumetzidis and Macheras (2006)
as limited to a time period of the last 100 years (1896–2006),

tarting with Noyes and Whitney (1897),  which excludes Stefan’s
orks.

The Noyes and Whitney (1897) ideas have been sufficiently
ppreciated by Dokoumetzidis and Macheras (2006) and need not
e considered again here. However, to provide a linkage of their

deas and those of Stefan (1889) we may  quote from Noyes and
hitney (1897):

.  . .the phenomenon may  be considered as simply a process of
diffusion. That is, we can imagine the sticks of solid substances
surrounded by an indefinitely thin film of saturated solution, from
which diffusion takes place into all portions of the solvent, this being
kept homogeneous by the rotation. If this were the case, the veloc-
ity of solution, in accordance with the law of diffusion, would be

proportional to the difference between the concentration of the sat-
urated solution and that of the solution present at the moment in
question.

This notion is in perfect agreement with the Stefan view of the
iffusion-controlled dissolution of solid bodies.
armaceutics 431 (2012) 12– 15 15

Nernst (1904) and Brunner (1904) treated the same problem
and refined the film model of Noyes and Whitney. However, the
film model equations reported by Nernst and Brunner are already
contained in the first Stefan paper on evaporation-diffusion (Stefan,
1873), published in 1873, and the Stefan original equations may  be
written as

ṅ1 = c
D12

L
ln

c  − c1L

c − c10
(37)

ṅ1 = D12

L
(c10 − c1L), (38)

where c denotes the molar concentration of the liquid solution;
c10 and c1L are the molar concentrations of the solute in the liquid
solution at the solid surface and outer boundary of the film of the
thickness L, respectively. Eq. (37) includes the Stefan flow, while the
simplified Stefan Eq. (38), reported by Nernst and Brunner, follows
already from the Fick theory. The most accurate expression for the
dissolution rate per unit of solid surface follows from the Stefan
dissolution theory,

ṅ1 = cS
dL

dt
= ˛cS

√
D12

t
, (39)

if  ̨ is obtained from Eq. (35). Eq. (39) belongs basically to so-called
penetration mass transfer models; because of the movement of
the solid surface, the dissolution of the solid may  be viewed as
penetration of the solvent into the solid phase.

Interestingly, none of the authors mentioned above was familiar
with the Stefan analysis of the dissolution-diffusion processes. The
situation is still unchanged and the Stefan analysis is not mentioned
in the literature. The same is true with his both penetration and film
models of mass transfer worked out in Stefan (1878) and revisited
in Mitrovic (in press).

4. Conclusions

Josef Stefan has thoroughly explored the dissolution kinetics of
solid bodies under the assumption that the dissolution phenom-
ena were dominated by diffusion in the adjacent liquid phase and
the solid–liquid interface is moving. The corresponding paper was
printed in the Sitzungsberichte of the Vienna Academy more than
120 years ago, but the results remained unnoticed so far. In view
of their scientific content and their importance for actual research
activities, the present contribution revisits the Stefan achievements
in the dissolution-diffusion area and makes them accessible to the
scientific community.
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